

High Performance S2D with Chelsio 40GbE

Chelsio T5 iWARP RDMA solution for Windows Storage Spaces Direct

Overview

Microsoft **Storage Spaces Direct** (S2D) is a feature introduced in Windows Server 2016 Technical Preview, which enables building highly available and scalable storage systems by pooling local server storage. You can now build HA Storage Systems using storage nodes with only local storage, which is either disk devices that are internal to each storage node. This eliminates the need for a shared SAS fabric and its complexities, but also enables using devices such as SATA solid state drives, which can help further reduce cost or NVMe solid state devices to improve performance. Storage Spaces Direct leverages SMB3 for all intra-node communication, including SMB Direct and SMB Multichannel, for low latency and high throughput storage. This guide presents S2D performance results using Chelsio iWARP RDMA technology in a **hyper-converged** deployment scenario.

Hyper-converged stack							
Hyper-V virtual machines							
Cluster Shared Volumes ReFS file	system	C:\Cluster storage					
Storage Spaces		••• Virtual disks					
P	Storage pools	9					
Software storage bus							
Server Set	PP PP rver Ser	ver Server					
	SMB network	LI					

Figure 1 – S2D Hyper-Converged Stack

Why Chelsio iWARP RDMA Solution for S2D

Chelsio fifth generation, high performance RDMA 10/40Gbps Ethernet adapters, utilizing iWARP:

- Enable incremental, non-disruptive server installs.
 - \circ Support the ability to work with any legacy (non-DCB) switch infrastructure.
 - Enable a decoupled server and switch upgrade cycle and a brownfield strategy to enable high performance, low cost S2D enablement.

- Are easy to use and install.
 - Have equivalent network switch configuration requirements "as non-RDMA NICs" see Microsoft blog Hardware options for evaluating S2D.
- Are cheaper to deploy → end user can purchase more compute servers for the same investment amount.
 - Do not require gateways or routers to connect to the TCP/IP world.
 - Saves significant CPU cycles.
 - Enables cheaper CPU's for equivalent performance.
 - Enables significantly lower datacenter and utilities.
- Utilize very robust and stable protocols.
 - iWARP has been an IETF standard (RFC 5040) for 9 years, TCP/IP has been an IETF standard (RFC 793, 791) for 35 years.
 - No surprises, no fine print, <u>plug and play.</u>
 - Have multi-vendor support.
- Are supported in other Windows products.
 - o Client RDMA in Windows 10 enables more deployment options.
 - \circ Storage Replica is natively supported to enable disaster recovery.
 - o Network Direct and Nano Server are natively supported.
 - o iSCSI HW Offloaded initiator is natively supported.
- Are scalable to wherever the datacenter can scale to.
 - Inherit the loss resilience and congestion management from underlying TCP/IP.
- Are very high performance.
 - Extremely low latency, high bandwidth, high message rate.

Following table shows a high level difference between iWARP and RoCE v2 (another RDMA over Ethernet alternatives).

iWARP	RoCE			
Native TCP/IP over Ethernet, no different from	Difficult to install and configure - "needs a team of			
NFS or HTTP	experts" - Plug-and-Debug			
Works with ANY Ethernet Switch	Requires DCB - expensive infrastructure equipment			
Works with ANT Ethernet Switch	upgrade			
Works with ALL Ethernet equipment	Poor interoperability - may not work with switches			
	from different vendors			
No need for special configuration - TRUE Plug-	Fixed QoS configuration - Data Center Bridging (DCB)			
And-Play	must be setup identically across all switches			
TCP/IP allows reach to cross server racks and	Does not scale - requires Priority Flow Control (PFC),			
cloud scale	limited to single subnet, intra-server rack			
	communications			
No distance limitations. Ideal for remote	Short distance - PFC range is limited to a few			
communications and Windows DR support out-	hundred meters' maximum - Requires Metro Router			
of-the-box	for Windows			
WAN routable users and IP Infrastructure	RoCEv1 not routable. RoCEv2 requires lossless IP			
WANT FOR ANC, USETS and IF Initiastructure	infrastructure and restricts router configuration			

Storage Spaces Direct, Storage IOPS Performance with iWARP

This demonstration was published by the Microsoft team (<u>Storage IOPS Update with S2D -</u><u>Microsoft Blog</u>) and utilizes a 16-node Storage Spaces Direct hyper-converged configuration, NVMe SSD technology, and DRAM connected across an iWARP RDMA-enabled cluster, attached to a 32 port Cisco 3132 switch. Each node was equipped with the following hardware:

- 2x Xeon E5-2699v4 2.3Ghz (22c44t)
- 128GB DRAM
- 4x 800GB Intel P3700 NVMe (PCIe 3.0 x4)
- 1x LSI 9300 8i
- 20x 1.2TB Intel S3610 SATA SSD
- 1x Chelsio T580-CR (Dual Port 40Gb PCIe 3.0 x8)
 - Chelsio Unified Wire driver v5.0.0.62
 - o Chelsio FW v1.16.1.0
 - Dual port connected / adapter

A 44 virtual machines per node, for a total of 704 virtual machines configuration was used for this setup. Each virtual machine was configured with 1vCPU and <u>VMFleet</u> tool was used to run <u>DISKSPD</u> in each of the virtual machines with 1 thread, 4KiB random read with 32 outstanding IO.

	IOPS	Reads	Writes	BW (MB/s)	Read Write	Read Lat (ms)	Write Lat
otal	4,959,166	4,958,800	366	20,244	20,242 2		
53171R10-02	310,680	310,659	21	1,264	1,264	2.997	5.642
53171R10-04	304,697	304,676	22	1,248	1,248	2.911	5.561
53171R10-06	325,984	325,962	22	1,335	1,335	2.572	5.031
53171R10-08	310,081	310,059	22	1,270	1,270	2.859	5.474
53171R10-10	323,541	323,518	23	1,317	1,317	2.604	5.008
53171R10-12	307,075	307,052	23	1,255	1,255	3.057	5.642
53171R10-14	316,119	316,096	23	1,295	1,295	2.967	5.623
53171R10-16	310,378	310,355	22	1,271	1,271	3.011	5.617
53171R10-18	306,284	306,261	24	1,246	1,246	2.998	5.540
53171R10-20	312,300	312,276	24	1,271	1,271	2.930	5.564
53171R10-22	314,739	314,715	24	1,285	1,285	2.828	5.416
53171R10-24	307,669	307,646	23	1,252	1,252	2.986	5.638
53171R10-26	302,105	302,082	23	1,237	1,237	j 3.040	5.718
53171R10-28	302,954	302,930	24	1,235	1,235	i 2.945	5.610
53171R10-30	319,339	319,316	23	i 1.300	1,299	2.253	4.569
53171R10-32	285,222	285,198	23	1,164	1,163	3.444	5.988

Figure 3 – Storage Space Direct IOPS Numbers

As you can see from the above screenshot, this setup was able to demonstrate ~5M IOPS in aggregate into the virtual machines. This delivers ~7,000 IOPS per virtual machine!

"This technology demonstration highlights how Storage Spaces Direct, combined with advanced flash-based storage connected by Chelsio's 40GbE iWARP networking solution, helps users build faster, easy-to-scale and reliable storage for their private cloud deployments," said Erin Chapple, partner director of program management, enterprise cloud group, Microsoft Corp.

Summary

Chelsio RDMA enabled 40Gb Ethernet adapters deliver a high performance Storage Spaces Direct (S2D) solution using standard Ethernet infrastructure and enables datacenters to deploy S2D now by leveraging all-inboxed drivers with Chelsio Ethernet adapters. The ability to work with any non-DCBX switch, enables an immediate plug-and-play deployment. Support of iWARP protocol is enabled since Windows Server 2012-R2 release, has allowed for years of testing for a very robust, tested, and efficient deployment with Chelsio iWARP enabled Ethernet adapters. In addition to Storage Spaces Direct, iWARP Protocol also powers other aspects of Microsoft Windows installations such as Storage Replica for disaster recovery, SMB Direct for high performance file access, Client RDMA for bringing RDMA benefits to Windows 10 deployments, and Network Direct for Windows HPC deployments.

Related Links

Storage IOPS Update with S2D - Microsoft Blog 5M IOPS with Storage Spaces Direct - Microsoft Tweet ClearPointe case study using Chelsio iWARP RDMA Adapters Windows Server 2016 Storage Spaces Direct Configuring Storage Spaces Direct