High-Performance GPU Clustering: GPUDirect RDMA over 40GbE iWARP

Tom Reu
Consulting Applications Engineer
Chelsio Communications
tomreu@chelsio.com
Chelsio Corporate Snapshot

Leader in High Speed Converged Ethernet Adapters

- Leading 10/40GbE adapter solution provider for servers and storage systems
 - ~800K ports shipped
- High performance protocol engine
 - 80MPPS
 - 1.5μsec
 - ~5M+ IOPs
- Feature rich solution
 - Media streaming hardware/software
 - WAN Optimization, Security, etc.
- Company Facts
 - Founded in 2000
 - 150 strong staff
- R&D Offices
 - USA – Sunnyvale
 - India – Bangalore
 - China - Shanghai

ISO 9001:2000 REGISTERED
CERTIFICATE NO: 164305
RDMA Overview

Performance and efficiency in return for new communication paradigm

- Direct memory-to-memory transfer
- All protocol processing handling by the NIC
 - Must be in hardware
- Protection handled by the NIC
 - User space access requires both local and remote enforcement
- Asynchronous communication model
 - Reduced host involvement
- Performance
 - Latency - polling
 - Throughput
- Efficiency
 - Zero copy
 - Kernel bypass (user space I/O)
 - CPU bypass
iWARP

What is it?

• Provides the ability to do Remote Direct Memory Access over Ethernet using TCP/IP
• Uses Well-Known IB Verbs
• Inboxed in OFED since 2008
• Runs on top of TCP/IP
 • Chelsio implements iWARP/TCP/IP stack in silicon
 • Cut-through send
 • Cut-through receive
• Benefits
 • Engineered to use “typical” Ethernet
 • No need for technologies like DCB or QCN
 • Natively Routable
 • Multi-path support at Layer 3 (and Layer 2)
 • It runs on TCP/IP
 • Mature and Proven
 • Goes where TCP/IP goes (everywhere)
iWARP updates and enhancements are done by the IETF STORM (Storage Maintenance) working group

- RFCs
 - RFC 5041 Direct Data Placement over Reliable Transports
 - RFC 5044 Marker PDU Aligned Framing for TCP Specification
 - RFC 6580 IANA Registries for the RDDP Protocols
 - RFC 6581 Enhanced RDMA Connection Establishment
 - RFC 7306 Remote Direct Memory Access (RDMA) Protocol Extensions

- Support from several vendors, Chelsio, Intel, QLogic
iWARP

Increasing Interest in iWARP as of late

• Some Use Cases
 • High Performance Computing
 • SMB Direct
 • GPUDirect RDMA
 • NFS over RDMA
 • FreeBSD iWARP
 • Hadoop RDMA
 • Lustre RDMA
 • NVMe over RDMA fabrics
iWARP

Advantages over Other RDMA Transports

- It’s Ethernet
 - Well Understood and Administered
 - Uses TCP/IP
 - Mature and Proven
 - Supports rack, cluster, datacenter, LAN/MAN/WAN and wireless
 - Compatible with SSL/TLS
 - Do not need to use any bolt-on technologies like
 - DCB
 - QCN
- Does not require a totally new network infrastructure
 - Reduces TCO and OpEx
iWARP vs RoCE

<table>
<thead>
<tr>
<th>iWARP</th>
<th>RoCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native TCP/IP over Ethernet, no different from NFS or HTTP</td>
<td>Difficult to install and configure - “needs a team of experts” - Plug-and-Debug</td>
</tr>
<tr>
<td>Works with ANY Ethernet switches</td>
<td>Requires DCB - expensive equipment upgrade</td>
</tr>
<tr>
<td>Works with ALL Ethernet equipment</td>
<td>Poor interoperability - may not work with switches from different vendors</td>
</tr>
<tr>
<td>No need for special QoS or configuration - TRUE Plug-and-Play</td>
<td>Fixed QoS configuration - DCB must be setup identically across all switches</td>
</tr>
<tr>
<td>No need for special configuration, preserves network robustness</td>
<td>Easy to break - switch configuration can cause performance collapse</td>
</tr>
<tr>
<td>TCP/IP allows reach to Cloud scale</td>
<td>Does not scale - requires PFC, limited to single subnet</td>
</tr>
<tr>
<td>No distance limitations. Ideal for remote communication and HA</td>
<td>Short distance - PFC range is limited to few hundred meters maximum</td>
</tr>
<tr>
<td>WAN routable, uses any IP infrastructure</td>
<td>RoCEv1 not routable. RoCE v2 requires lossless IP infrastructure and restricts router configuration</td>
</tr>
<tr>
<td>Standard for whole stack has been stable for a decade</td>
<td>ROCEv2 incompatible with v1. More fixes to missing reliability and scalability layers required and expected</td>
</tr>
<tr>
<td>Transparent and open IETF standards process</td>
<td>Incomplete specification and opaque process</td>
</tr>
</tbody>
</table>
Chelsio’s T5

Single ASIC does it all

• High Performance Purpose Built Protocol Processor
• Runs multiple protocols
 • TCP with Stateless Offload and Full Offload
 • UDP with Stateless Offload
 • iWARP
 • FCoE with Offload
 • iSCSI with Offload
• All of these protocols run on T5 with a SINGLE FIRMWARE IMAGE
 • No need to reinitialize the card for different uses
 • Future proof e.g. support for NVMf yet preserves today’s investment in iSCSI
T5 ASIC Architecture

High Performance Purpose Built Protocol Processor

- Single processor data-flow pipelined architecture
- Up to 1M connections
- Concurrent Multi-Protocol Operation

Efficient Performance™
Leading Unified Wire™ Architecture

Converged Network Architecture with all-in-one Adapter and Software

Storage
- NVMe/Fabrics
- SMB Direct
- iSCSI and FCoE with T10-DIX
- iSER and NFS over RDMA
- pNFS (NFS 4.1) and Lustre
- NAS Offload
- Diskless boot
- Replication and failover

Virtualization & Cloud
- Hypervisor offload
- SR-IOV with embedded VEB
- VEPA, VN-TAGs
- VXLAN/NVGRE
- NFV and SDN
- OpenStack storage
- Hadoop RDMA

HFT
- WireDirect technology
- Ultra low latency
- Highest messages/sec
- Wire rate classification

Networking
- 4x10GbE/2x40GbE NIC
- Full Protocol Offload
- Data Center Bridging
- Hardware firewall
- Wire Analytics
- DPDK/netmap

HPC
- iWARP RDMA over Ethernet
- GPUDirect RDMA
- Lustre RDMA
- pNFS (NFS 4.1)
- OpenMPI
- MVAPICH

Media Streaming
- Traffic Management
- Video segmentation Offload
- Large stream capacity

Single Qualification – Single SKU
Concurrent Multi-Protocol Operation
GPUDirect RDMA

• Introduced by NVIDIA with the Kepler Class GPUs. Available today on Tesla and Quadro GPUs as well.
• Enables Multiple GPUs, 3rd party network adapters, SSDs and other devices to read and write CUDA host and device memory
• Avoids unnecessary system memory copies and associated CPU overhead by copying data directly to and from pinned GPU memory
• One hardware limitation
 • The GPU and the Network device MUST share the same upstream PCIe root complex
• Available with Infiniband, RoCE, and now iWARP
GPUDirect RDMA

T5 iWARP RDMA over Ethernet certified with NVIDIA GPUDirect

- Read/write GPU memory directly from network adapter
 - Peer-to-peer PCIe communication
 - Bypass host CPU
 - Bypass host memory
- Zero copy
- Ultra low latency
- Very high performance
- Scalable GPU pooling
 - Any Ethernet networks
Modules required for GPUDirect RMDA with iWARP

- Chelsio Modules
 - cxgb4 - Chelsio adapter driver
 - iw_cxgb4 - Chelsio iWARP driver
 - rdma_ucm - RDMA User Space Connection Manager
- NVIDIA Modules
 - nvidia - NVIDIA driver
 - nvidia_uvm - NVIDIA Unified Memory
 - nv_peer_mem - NVIDIA Peer Memory
Case Studies
HOOMD-blue

- General Purpose Particle simulation toolkit
- Stands for: **Highly Optimized Object-oriented Many-particle Dynamics - Blue Edition**
- Running on GPUDirect RDMA - **WITH NO CHANGES TO THE CODE - AT ALL!**
- More Info: www.codeblue.umich.edu/hoomd-blue
HOOMD-blue

Test Configuration

- 4 Nodes
- Intel E5-1660 v2 @ 3.7 Ghz
- 64 GB RAM
- Chelsio T580-CR 40Gb Adapter
- NVIDIA Tesla K80 (2 GPUs per card)
- RHEL 6.5
- OpenMPI 1.10.0
- OFED 3.18
- CUDA Toolkit 6.5
- HOOMD-blue v1.3.1-9
- Chelsio-GDR-1.0.0.0
- Command Line:

```
$MPI_HOME/bin/mpirun --allow-run-as-root -mca btl_openib_want_cuda_gdr 1
    -np X -hostfile /root/hosts -mca btl_openib,sm,self -mca
    btl_openib_if_include cxgb4_0:1 --mca btl_openib_cuda_rdma_limit 65538
    -mca btl_openib_receive_queues P,131072,64 -x CUDA_VISIBILE_DEVICES=0,1
    /root/hoomd-install/bin/hoomd ./bmark.py --mode=gpu|cpu
```
• Classic benchmark for general purpose MD simulations.
• Representative of the performance HOOMD-blue achieves for straight pair potential simulations.
HOOMD-blue

Lennard-Jones Liquid 64K Particles Benchmark Results

Average Timesteps per Second

<table>
<thead>
<tr>
<th>Test 1</th>
<th>26 2 CPU Cores</th>
<th>488 2 GPUs</th>
<th>1,230 2 GPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 2</td>
<td>88 8 CPU Cores</td>
<td>503 4 GPUs</td>
<td>1,403 4 GPUs</td>
</tr>
<tr>
<td>Test 3</td>
<td>214 40 CPU Cores</td>
<td>1,089 8 GPUs</td>
<td>1,771 8 GPUs</td>
</tr>
</tbody>
</table>

CPU

GPU w/o GPUDirect RDMA

GPU w/ GPUDirect RDMA

Longer is Better
HOOMD-blue

Lennard-Jones Liquid 64K Particles Benchmark Results

Hours to complete 10e6 steps

Test 1
- 6 CPU Cores, 2 GPUs: 2.2 hours
- 2 CPU Cores, 2 GPUs: 6 hours

Test 2
- 8 CPU Cores, 4 GPUs: 5.5 hours
- 8 CPU Cores, 4 GPUs: 1.7 hours

Test 3
- 40 CPU Cores, 8 GPUs: 2.5 hours
- 40 CPU Cores, 8 GPUs: 1.5 hours

CPU w/o GPUDirect RDMA
CPU w/ GPUDirect RDMA

Shorter is Better
HOOMD-blue
Quasicrystal Benchmark

• runs a system of particles with an oscillatory pair potential that forms a icosahedral quasicrystal
HOOMD-blue

Quasicrystal results

Average Timesteps per Second

Test 1

- 11 2 CPU Cores
- 308 2 GPUs
- 407 2 GPUs

Test 2

- 43 8 CPU Cores
- 656 4 GPUs
- 728 4 GPUs

Test 3

- 31 40 CPU Cores
- 915 8 GPUs
- 1,158 8 GPUs

CPU

GPU w/o GPUDirect RDMA

GPU w/ GPUDirect RDMA

Longer is Better
Efficient Performance™

HOOMD-blue

Quasicrystal results

Hours to complete 10e6 steps

Test 1
- 9 hours (2 GPUs)
- 7 hours (2 GPUs)
- 264 hours (2 CPU Cores)

Test 2
- 4 hours (4 GPUs)
- 3.5 hours (4 GPUs)
- 63 hours (8 CPU Cores)

Test 3
- 3 hours (8 GPUs)
- 2.4 hours (8 GPUs)
- 86 hours (40 CPU Cores)

Shorter is Better

Legend:
- CPU
- GPU w/o GPUDirect RDMA
- GPU w/ GPUDirect RDMA
Caffe
Deep Learning Framework

• Open source Deep Learning software from Berkeley Vision and Learning Center
• Updated to include CUDA support to utilize GPUs
• Standard version does NOT include MPI support
• MPI implementations
 • mpi-caffe
 • Used to train a large network across a cluster of machines
 • model-parallel distributed approach.
 • caffe-parallel
 • Faster framework for deep learning.
 • data-parallel via MPI, splits the training data across nodes
Summary

GPUDirect RDMA over 40GbE iWARP

• iWARP provides RDMA Capabilities to a Ethernet network
• iWARP uses tried and true TCP/IP as its underlying transport mechanism
• Using iWARP does not require a whole new network infrastructure and the management requirements that come along with it
• iWARP can be used with existing software running on GPUDirect RDMA which NO CHANGES required to the code
• Applications that use GPUDirect RDMA will see huge performance improvements
• Chelsio provides 10/40Gb iWARP TODAY with 25/50/100 Gb on the horizon
More information

GPUDirect RDMA over 40GbE iWARP

• Visit our website, www.chelsio.com, for more White Papers, Benchmarks, etc.
• Webinar: https://www.brighttalk.com/webcast/13671/189427
• Beta code for GPUDirect RDMA is available TODAY from our download site at service.chelsio.com
• Sales questions - sales@chelsio.com
• Support questions - support@chelsio.com
Questions?
Thank You