Chelsio &':\

Communications *
—— Accelerate

100G Kernel and User Space NVMe/TCP Using Chelsio TOE

Boosting Software-Defined Storage Performance While Reducing Hardware Costs

Key Take-aways
Remote, disaggregated, networked NVMe-oF storage with performance comparable to local storage.
Reduced CPU overhead, resulting in cheaper CPUs, and more cores left over for host storage software.
Better effective network utilization and server storage 1/0 performance.
Respond to dropped or reordered packets at silicon speed via TOE and isolate host and network performance
from each other.
Boost performance productivity while reducing costs and complexity.
Enable more affordable entry level solutions, or higher performing scalable solutions.
Free up CPU resources to run your software defined storage and application software.

The NVMe over Fabrics (NVMe-oF) specification extends the benefits of NVMe to large fabrics
beyond the reach and scalability of traditional in-server physical PCle. NVMe/TCP is a technology
that facilitates NVMe-oF over existing standard datacenter IP networks. It provides the following
advantages over other legacy storage networks and Fabric transports like RDMA (RoCE) and Fibre
Channel:

e TCP/IP is a Robust and stable protocol
o TCP/IP has been an IETF standard (RFC 793, 791) for over 35 years.
o Well-known, Inherent accuracy, reliability, and scalability.
e TCP/IP is Easy to use
o Plug-and-Play compatibility.
o Lower set-up time.
o No application changes.
e TCP/IP costs less to deploy
o No additional switches/hardware is required. Compatible with existing data center
infrastructure and network tools.
o Enables a decoupled server and switch upgrade cycle and a brownfield strategy for
datacenter deployments.
o End-user can purchase more compute servers for the same investment amount.
o Leverage existing TCP network management expertise to reduce costs.

This paper presents the significant performance benefits of the Chelsio T6 100GbE NVMe/TOE
solution in both Kernel and User modes. Chelsio T6 adapter delivers line-rate throughput and more
than 2.9 million IOPs at the 4K 1/O size. In addition, with only a 4.96 ps delta latency between remote
and local storage access, the Chelsio solution proves to be the best-in-class in providing the next
generation, scalable storage network over standard and cost-effective Ethernet infrastructure with
an efficient processing path.

Chelsio%

Communications
—— Accelerate

Chelsio T6 TOE (TCP/IP Offload Engine) is fully capable of offloading TCP/IP processing of Kernel and
User space SPDK NVMe/TCP target I/O to hardware at 100Gbps. Thus, it provides low latency, high
throughput Ethernet solution for connecting high--performance NVMe SSDs over a scalable,
congestion-controlled, and traffic-managed fabric.

The unique ability of a TOE to perform the full transport layer functionality in hardware is essential
to obtaining tangible benefits. The vital aspect of the transport layer is process-to-process
communication in user space. This means that data passed to the TOE comes directly from the
application process. The data delivered by the TOE goes directly to the application process resulting
in less server CPU overhead.

SPDK! has been designed to extract maximum server and storage I/O performance by moving all
the necessary software drivers to user space. By moving the driver software to user space and
changing from kernel interrupts, locks, and 1/0O path software bottlenecks, application performance
is enhanced. The benefits of TOE and SPDK include scalable high-performance with low latency; for
user space storage applications like NVMe/TCP target and software-defined storage. NVMe/TOE
(Kernel and User Mode) support is part of Unified Wire Packages available via the Chelsio website.

Test Results

Chelsio’s state-of-the-art TOE allows for the entire TCP/IP state to run on the NIC itself, including
connection set-up and tear-down, and all the exception handling, thus saving considerable host
server resources. The following graph presents I0Ps and throughput results of SPDK NVMe/TOE
Target with SPDK Kernel NVMe/TCP (regular NIC) hosts using Null Block devices. The results are
collected using fio tool with I/O size varying from 4 to 256 KBytes with an access pattern of random
READs and WRITEs.

10000000.00 4 — - 100.00

1000000.00 -+

- 80.00 —

100000.00 -+ _§'

10000.00 - 60.00 =

4 2

. L

G 1000.00 L 2000 B

o

100.00 -+ =

F 20.00
10.00 -+

1.00 - - 0.00
4k 8k 64k 256k
1/0 Size (Bytes)

I Read IOPs mmm \Write [OPs === Read BW e \Nrite BW

Figure 1 — SPDK NVMe/TOE Target IOPs and Throughput vs. 1/0 size

! The Storage Performance Development Kit (SPDK) is a set of tools and libraries for writing high performance,
scalable, user-mode storage applications. More information can be found at www.spdk.io.

Copyright 2021. Chelsio Communications Inc. All rights reserved. 2

http://www.spdk.io/

Chelsio%

Communications
—— Accelerate

The following graph compares |IOPs and throughput results of Kernel space NVMe/TOE Target &
hosts with NVMe/TCP Target & hosts using Null Block devices. The results are collected using fio
tool with 1/0 size varying from 4 to 256 KBytes with an access pattern of random READs and WRITEs.

10000000 100
1000000

80 __

100000 2

]

10000 0=

[7] 3

S 1000 =

= 40 %

3

100 2

i -

20+
10

1 0
4K 8K 64K 256K
1/0 Size (Bytes)

s NVMe/TOE_Read_IOPs mmmmm NVMe/TOE_Write_|OPs sezsssesr NVMe/TCP_Read_|IOPs
=223 NVMe/TCP_Write_IOPs NVMe/TOE_Read_BW NVMe/TOE_Write_BW
= = = NVMe/TCP_Read BW = = = NVMe/TCP_Write_BW

Figure 2 - NVMe/TOE, NVMe/TCP Target IOPs and Throughput vs. 1/0 size

The above graphs show how the TOE-enabled T6 solution delivers line-rate READ and WRITE
throughput for both Kernel and User space NVMe targets. With the T6 NVMe/TOE, READ and WRITE

IOPs reach 2.9 Million at 4K 1/0 size while using less server CPU.

The following graph compares the CPU consumption per Gbps of Kernel space NVMe/TOE and
NVMe/TCP Targets for both READ and WRITE operations.

0.60
0.50

4K 8K 64K 256K
1/0 Size (Bytes)

NVMe/TOE_Read NVMe/TOE_Write
= = = NVMe/TCP_Read = = = NVMe_TCP_Write

Figure 3 - NVMe/TOE, NVMe/TCP Target % CPU/Gbps vs. I/O size

Figure 3 shows that NVMe/TOE solution consumes significantly less CPU per Gbps (up to 50%)
compared to NVMe/TCP. This is one of the most essential benefits for a hardware offloaded TCP
solution, resulting in a lower cost bill of materials. For example, in the testing in this paper, about

Copyright 2021. Chelsio Communications Inc. All rights reserved.

Chelsio&xit

Communications *
—— Accelerate

two cores per socket can be saved for line-rate performance at 4KB using the TOE relative to
software TCP.

In addition, using a TOE isolates the host application’s performance from the performance spikes
caused by network traffic. Since the stack is running on the NIC, the application no longer needs to
be swapped into the cache to retransmit or reorder a packet, thus making more efficient use of the
expensive host CPU. A NVMe/TOE solution delivers a fully ordered, reliable data stream to the host
with less server CPU overhead. Chelsio’s TOE solution is required to achieve 100 Gb/s and higher
line-rate throughput with minimal CPU usage.

The following table presents the 4K I/O Random latency numbers of SPDK NVMe/TOE Target with
SPDK Kernel NVMe/TCP (regular NIC) host and Kernel space NVMe/TOE Target & host using Micron
NVMe SSDs.

Read Write
Local | Remote Delta Local Remote Delta
SPDK NVMe/TOE 109.16 | 114.14 4.98 24.69 29.65 4.96
Kernel NVMe/TOE | 109.16 | 126.28 17.12 24.69 40.35 16.13

The remote versus local NVMe device access adds only 4.96 ps latency at 4K I/O with SPDK
NVMe/TOE. This demonstrates the local like performance of remote distributed storage using the
Chelsio T6 TOE enabled and SPDK solution.

The Demonstration

e Supermicro X10DRG-Q .
Target with T62100-CR

Supermicro X10SRA-F host
with T62100-CR

* 2Intel Xeon CPUs E5- < 100G [, e 1Intel Xeon CPU E5-1620 v4
2687W v4 12-core @ NS NS 4-core @ 3.50GHz (HT
3.00GHz (HT disabled) 0 ° disabled)

o 128 GBRAM X X * 32GB RAM

* 1 Micron 9100 MAX 2.4TB e RHEL 8.0 (5.4.45 kernel)

PCle NVMe SSD
e RHELS8.0 (5.4.45 kernel)

Figure 4 — Latency Test set-up

The Latency test set-up consists of a NVMe target machine connected to a single host back-to-back
using a single port on each system.

The Bandwidth/IOPs test set-up consists of a NVMe target machine connected to 4 host machines
through a 100GbE switch using a single port on each system.

For both the tests, an MTU of 90008 is used on the ports under test. The Chelsio Unified Wire driver
v3.13.0.1 is installed on each machine.

Chelsiozﬁi

Communications *
—— Accelerate

e Supermicro X10SRA-F hosts with
T62100-CR adapter

e 1 Intel Xeon CPU E5-1620 v4 4-
core @ 3.50GHz (HT enabled)

e 32 GB RAM

e RHEL 8.0 (5.4.45 kernel)

e Supermicro X10DRG-Q Target with
T62100-CR adapter

e 2 Intel Xeon CPUs E5-2687W v4
12-core @ 3.00GHz (HT enabled)

e 128 GB RAM

e RHEL 8.0 (5.4.45 kernel)

Figure 5 — Bandwidth/IOPs Test set-up

Storage configuration
For Bandwidth/IOPs test, 8 NVMe targets are created on the target server using NULL BLOCK
devices, each of 1GB size. The host connects to 2 targets using 4 connections each.

For latency test, the target is configured with 1 Micron 9100 MAX 2.4TB PCle NVMe SSD. One host
connects to the target using one connection.

Set-up Configuration
General Configuration

Vi.

Disable virtualization, c-state technology, VT-d, Intel I/O AT, SR-IOV in system BIOS.

Enable Hyper-threading in system BIOS for Bandwidth/IOPs test.

Compile and install the 5.4.45 kernel from Chelsio Unified Wire v3.13.0.1 package and reboot
the machine into the newly installed kernel.

[root@host~]# cd ChelsioUwire-3.13.0.1

[root@host~]# make kernel install
[root@host~]# reboot

Install Chelsio drivers and tools.

[root@host~]# make install

Add the below parameters to grub kernel command line.
BW/IOPs test: intel_idle.max_cstate=0 processor.max_cstate=0 intel_pstate=disable
Latency test: idle=poll

Set cpupower governor to performance

[root@host~]# cpupower frequency-set --governor performance

Chelsio

Communications
_ —— Accelerate

vii. Set the below tuned-adm profile for BW/IOPs test.

[root@host~]# tuned-adm profile network-throughput

Set the below tuned-adm profile for latency test.

[root@host~]# tuned-adm profile network-latency

viii. Set the below sysctl parameters.

sysctl -w net.ipvéd.tcp timestamps=0

sysctl -w net.core.netdev _max backlog=250000
sysctl -w net.core.rmem max=4194304

sysctl -w net.core.wmem max=4194304

sysctl -w net.core.rmem default=4194304

sysctl -w net.core.wmem default=4194304

sysctl -w net.core.optmem max=4194304

sysctl -w net.ipvéd.tcp rmem="4096 87380 4194304"
sysctl -w net.ipvé.tcp wmem="4096 16384 4194304"
sysctl -w net.ipvéd.tcp low latency=1

sysctl -w net.ipvéd.tcp adv _win scale=l

ix. Copy the low latency firmware configuration file for latency test.

[root@host~]# cp ChelsioUwire-
3.13.0.1/src/network/firmware/low_latency config/t6-config.txt
/1lib/firmware/cxgb4d/.

X. Precondition the NVMe SSD for latency test.

[root@host~]# msecli -N -f 1 -m 0 -g 512 -j 1 -n /dev/nvme0

[root@host~]# for 1 in "seq 0 1°; do fio -name=SeqgCond --readwrite=write --
bs=128k --iocengine=libaio --iodepth=64 --direct=1 --size=100% --thread --
filename=/dev/nvme0; done

[root@host~] # fio --rw=randwrite --name=random --ioengine=libaio --size=400m
--direct=1 --filename=/dev/nvme0 --time based --runtime=4000 --iodepth=1 --
numjobs=1 --unit base=1 --bs=4K --kb base=1000

SPDK NVMe/TOE Configuration
Target
i. Load the Chelsio SPDK NVMe/TOE Offload driver and bring up interface with IPv4 address.

[root@host~]# modprobe chtcp
[root@host~]# ifconfig ethX <IP address> mtu 9000 up

ii. Configure Hugepages.

[root@host~]# cd ChelsioUwire-3.13.0.1/build/src/chspdk/user/spdk/
[root@host spdk]# HUGEMEM=32768 scripts/setup.sh

iii. Update the target configuration file, etc/spdk/nvmf.conf.in

BW/IOPs test:
[Global]

Chelsio

Communications
_ —— Accelerate

[Null]

Dev NullO 1024 4096
Dev Nulll 1024 4096
Dev Null2 1024 4096
Dev Null3 1024 4096
Dev Null4 1024 4096
Dev Null5 1024 4096
Dev Nullé6 1024 4096
Dev Null7 1024 4096

[Nvmf]
AcceptorPollRate 10000
ConnectionScheduler RoundRobin

[Transport]
Type TCP

[Nvme]

[Subsystem0]

NON ngn.2016-06.1i0.spdk:cnode0
Listen TCP 10.1.1.149:4420
AllowAnyHost Yes

Host ngn.2016-06.i0.spdk:init
SN SPDK00000000000000

MN SPDK ControllerO

Namespace NullO

[Subsystem7]

NON ngn.2016-06.io0.spdk:cnode?7
Listen TCP 10.1.1.149:4420
AllowAnyHost Yes

Host ngn.2016-06.i0.spdk:init
SN SPDK0O0000000000007

MN SPDK Controller?

Namespace Null7

Latency test:
[Global]
[Malloc]
[ATIO]
[Nvmf]
AcceptorPollRate 10000
ConnectionScheduler RoundRobin

[Transport]
Type TCP

[Nvme]
TransportID "trtype:PCIle traddr:0000:01:00.0" NvmeO

[Subsystem?2]
NON ngn.2016-06.io0.spdk:cnode?2
Listen TCP 10.1.1.144:4420
AllowAnyHost Yes
Host ngn.2016-06.io0.spdk:init
SN SPDK0O0000000000002
MN SPDK Controller2
Namespace NvmeOnl 1

Chelsio

Communications
_ —— Accelerate

iv. Start the target.

[root@host spdkl# ./app/nvmf tgt -m OxFFF -c etc/spdk/nvmf.conf.in

Host
i. Load the Chelsio NIC driver and bring up interface with IPv4 address.

[root@host~]# modprobe cxgb4
[root@host~]# ifconfig ethX <IP address> mtu 9000 up

ii. CPU affinity was set for BW/IOPs test.
[root@host~]# t4 perftune.sh -n -Q nic
CPU affinity was set for latency test to use a single CPU (3 in this case).
[root@host~]# t4 perftune.sh -n -Q nic -c 3

iii. Clone the SPDK, configure with FIO and install it.

Note: Ensure CUnit and libuuid packages are installed.

[root@host~]# git clone https://github.com/spdk/spdk

[root@host~]# cd spdk

[root@host~]# git submodule update -init

[root@host~]# ./configure --with-fio=/root/fio-fio-3.20/ --disable-tests
[root@host~]# make && make install

[root@host~]# scripts/setup.sh

iv. Configure Hugepages.

[root@host~]# mkdir /root/huge 1GB

[root@host~]# echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr hugepages
[root@host~]# echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages
[root@host~]# vim /etc/fstab

nodev /dev/hugepages hugetlbfs pagesize=2MB 0 0

nodev /root/huge 1GB hugetlbfs pagesize=1GB 0 0

[root@host~]# mount -a

BW/IOPs test:
Run the fio test on all 4 hosts at the same time.

[root@hostl~]# LD PRELOAD=/root/spdk/build/fio/spdk nvme fio --
rw=randread/randwrite --name=random --norandommap=1 --ioengine=spdk --thread=1
--s5ize=400m --group reporting --exitall --invalidate=1 --direct=1 --
filename="trtype=TCP adrfam=IPv4 traddr=10.1.1.149 trsvcid=4420
subngn=ngn.2016-06.10.spdk\:cnode0 ns=1:trtype=TCP adrfam=IPv4
traddr=10.1.1.149 trsvcid=4420 subngn=ngn.2016-06.io.spdk\:cnodel ns=1' --
time based --runtime=3600 --iodepth=64 --numjobs=4 --unit base=1 --bs=<value>
-—kb base=1000 --ramp time=2

Host2 will use ngn.2016-06.io.spdk:cnode2 and ngn.2016-06.io.spdk:cnode3
Host3 will use ngn.2016-06.i0.spdk:cnoded4 and ngn.2016-06.1i0.spdk:cnodeb5
Host4 will use ngn.2016-06.io.spdk:cnode6 and ngn.2016-06.1io.spdk:cnode?7

Chelsios

Communications
_ —— Accelerate

Latency test:
Run the fio test on one host.

[root@hostl~]# LD PRELOAD=/root/spdk/build/fio/spdk nvme fio --
rw=randread/randwrite --name=random --norandommap=1 --ioengine=spdk --thread=1

-—group reporting --exitall --fsync on close=1 --invalidate=1 --direct=1 --
filename="trtype=TCP adrfam=IPv4 traddr=10.1.1.149 trsvcid=4420 ns=1' --
time based --runtime=3600 --iodepth=1 --numjobs=1 --unit base=1 --bs=<value> -

-kb base=1000 --ramp time=2

Kernel NVMe/TOE Configuration
Execute the below commands on both Target and host machines.
i. Load the Chelsio Offload drivers and bring up interface with IPv4 address.

[root@host~]# modprobe t4 tom
[root@host~]# ifconfig ethX <IP address> mtu 9000 up
[root@host~]# mount -t configfs none /sys/kernel/config

ii. Apply the below TOE cop policy.

[root@host~]# cat /root/cop policy

all => offload !nagle !ddp !coalesce
[root@host~]# cop -d -o file /root/cop policy
[root@host~]# cxgbtool ethX policy file

iii. Set the below TOE sysctl parameters.

[root@host~]# sysctl -w toe.toel_tom.max host sndbuf=49152
[root@host~]# sysctl -w toe.toel tom.txplen=0

iv. CPU affinity was set for BW/IOPs test.
[root@host~]# t4 perftune.sh -n -Q ofld
CPU affinity was set for Latency test to use a single CPU (3 in this case).
[root@host~]# t4 perftune.sh -n -Q ofld -c 3

Target
BW/IOPs test:
i. Loadthe NVMe drivers.

[root@host~]# modprobe nvmet
[root@host~]# modprobe nvmet-tcp

ii. Create 8 Null Block devices, each of 1GB size.
[root@host~]# modprobe null blk nr devices=8 gb=1 use per node hctx=Y

iii. Configure the target using the below script.

Chelsio

Communications
_ —— Accelerate

#!/bin/bash

IPPORT="4420"

IPADDR="10.1.1.149" # the ipaddress of your target TCP interface
NAME="nvme-nullb" # Use "nvme-ssd" while configuring SSDs
DEV="/dev/nullb" # Use "/dev/nvmeOnl" while configuring SSDs

for i in "seq 0 7°; do # For latency test, use “seq 0 1°

mkdir /sys/kernel/config/nvmet/subsystems/${NAME}S${1i}

mkdir -p /sys/kernel/config/nvmet/subsystems/${NAME}S${i}/namespaces/1

echo -n ${DEV}S${i}
>/sys/kernel/config/nvmet/subsystems/${NAME}S${i}/namespaces/1l/device path
echo 1 > /sys/kernel/config/nvmet/subsystems/${NAME}${i}/attr allow any host
echo 1 > /sys/kernel/config/nvmet/subsystems/${NAME}${1i}/namespaces/1/enable
done

mkdir /sys/kernel/config/nvmet/ports/1

echo "ipv4" > /sys/kernel/config/nvmet/ports/l/addr adrfam
echo "tcp" > /sys/kernel/config/nvmet/ports/1l/addr trtype
echo S$IPPORT > /sys/kernel/config/nvmet/ports/l/addr_ trsvcid
echo $IPADDR > /sys/kernel/config/nvmet/ports/1l/addr traddr

for i in “seq 0 7°; do # For latency test, use ‘“seq 0 1°

1In -s /sys/kernel/config/nvmet/subsystems/${NAME}S{1i}
/sys/kernel/config/nvmet/ports/1/subsystems/S${NAME}S{i}
done

Host
i. Loadthe NVMe drivers.

[root@host~]# modprobe nvme-tcp

BW/IOPs test:
i. The 4 hosts connect to the targets.

[root@hostl~]# for 1 in "seq 0 1°; do nvme connect -t tcp -s 4420 -a
10.1.1.149 -n nvme-nullb${i} -1 4; done
[root@host2~]# for 1 in “seq 2 3°; do nvme connect -t tcp -s 4420 -a
10.1.1.149 -n nvme-nullb${i} -1 4; done
[root@host3~]# for 1 in "seq 4 5°; do nvme connect -t tcp -s 4420 -a
10.1.1.149 -n nvme-nullb${i} -1 4; done
[root@host4~]# for 1 in “seq 6 7°; do nvme connect -t tcp -s 4420 -a
10.1.1.149 -n nvme-nullb${i} -1 4; done

ii. fiotool was run on all 4 hosts at the same time.

[root@host~]# fio —--rw=randwrite/randread --ioengine=libaio --name=random --
norandommap --size=400m --group reporting --exitall --fsync on close=1l --
invalidate=1 --direct=1 --runtime=30 --time based --filename= <device list> -
-iodepth=64 --numjobs=16 --bs=<value> --unit base=1 -kb base=1000 --
ramp_time=2

Latency test:
i. Single host connects to the target.

[root@host~]# nvme connect -t tcp -a 10.1.1.149 -n nvme-ssd0 -i 1

Chelsiowﬁit

Communications *
—— Accelerate

ii. fiotool was run on the host.

[root@host~]# fio —--rw=randwrite/randread --ioengine=libaio --name=random --
invalidate=1 --direct=1 --runtime=3600 --time based --fsync on close=1l --
group reporting --filename=<device list> --iodepth=1 --numjobs=1 --bs=4K

Kernel NVMe/TCP Configuration
For configuration details refer to the above configuration steps. Note that Chelsio NIC driver (cxgb4)
need to be loaded instead of Chelsio Offload driver (t4_tom) on the target and host machines.

Conclusion

This paper showcases the server CPU savings and the local-like performance capabilities of remote
storage access using the Chelsio T6 100G NVMe/TOE solution. The Chelsio T6 enables the NVMe
storage devices to be shared, pooled, and managed more effectively across a low latency, high-
performance network, and CPU server savings.

The test result proof points in this paper show:

e Delivers line-rate 99 Gbps throughput for both READ and WRITE.

e Reaches 2.9 Million IOPs at an 1/0 size of 4K.

o Adds only 4.96 pus latency for remote NVMe device access compared to local access.
e Provides significant CPU savings compared to NVMe/TCP.

TOE improves performance for all TCP applications while freeing up CPU resources for application
processing. This means all storage and networking traffic runs over a single 25/100Gb network,
rather than building and maintaining multiple networks, resulting in significant acquisition and
operational cost savings.

Using a Chelsio TOE-enabled adapter and the Unified Wire Software package available as part of the
Chelsio solution, users can create and maintain a true Converged Fabric-based server cluster for
software-defined storage and other applications.

Key take-aways:

v Remote, disaggregated, networked NVMe-oF storage with performance comparable to local
storage.

v Reduced CPU overhead, resulting in cheaper CPUs, and more cores left over for host storage
software.

v’ Better effective network utilization and server storage 1/0 performance.

v Respond to dropped or reordered packets at silicon speed via TOE and isolate host and

network performance from each other.

Boost performance productivity while reducing costs and complexity.

Enable more affordable entry-level solutions or higher-performing scalable solutions.

Free up CPU resources to run your software-defined storage and application software.

ANRNEN

Chelsioz%‘&

Communications
—— Accelerate

Call to Action

Contact Chelsio to arrange a trial evaluation of our T6 Unified Wire for NVMe/TCP and other Server
Storage I/O Network acceleration needs with your applications and software at sales@chelsio.com.
Learn more about Chelsio T6 Unified Wire and related technologies, along with technology, product,
and business financial benefits by contacting us and visiting www.chelsio.com.

Related Links

The True Cost of Non-Offloaded NICs
We put the iWARP in NVMe-oF

100G SPDK NVMe over Fabrics
NVMe-oF with iWARP and NVMe/TCP

mailto:sales@chelsio.com
https://www.chelsio.com/
https://www.chelsio.com/wp-content/uploads/resources/chelsio-offload-nics.pdf
https://www.chelsio.com/wp-content/uploads/resources/nvme-developer-days-3-19.pdf
https://www.chelsio.com/wp-content/uploads/resources/t6-100g-spdk-nvmeof.pdf
https://www.nvmedeveloperdays.com/English/Collaterals/Proceedings/2018/20181205_NETW-101_Dugan.pdf

